
How not to be a
Git
Tips and tricks for a good workflow

Who am I?
● Adam Jimerson
● Software Engineer @

Code Journeymen
● GDG Gigcity Organizer
● vendion@gmail.com
● https://google.com/+AdamJimerson

mailto:vendion@gmail.com
mailto:vendion@gmail.com
https://google.com/+AdamJimerson
https://google.com/+AdamJimerson

What is a Git?
1. A distributed revision control and source

code management (SCM) system with an
emphasis on speed, data integrity, and
support for distributed, non-linear workflows.

2. A mild profanity with origins in British
English for a silly, incompetent, stupid,
annoying, senile, elderly or childish person.

Still lost?
● Code School + Github’s ‘Try Git’ (interactive)
● Bitbucket Git Tutorials
● Pro Git Book or Online version (more recent)

http://try.github.com/
http://try.github.com/
https://www.atlassian.com/git/tutorial
https://www.atlassian.com/git/tutorial
http://www.amazon.com/Pro-Git-Scott-Chacon/dp/1430218339/ref=sr_1_1?ie=UTF8&qid=1408651553&sr=8-1&keywords=Pro+Git
http://git-scm.com/book
http://www.amazon.com/Pro-Git-Scott-Chacon/dp/1430218339/ref=sr_1_1?ie=UTF8&qid=1408651553&sr=8-1&keywords=Pro+Git

Lets start with tips

Listing tracked files
List all tracked files
 $ git ls-files

List all tracked files in the current branch
 $ git ls-tree -r <branch> --name-only

Ignoring tracked files
First we need to remove the file from Git
 $ git rm --cached <filename>

Then add the file to the ignore file
 $ echo ‘filename’ >> \ $projectRoot/.
gitignore

Ignoring tracked files
To tell git to ignore changes to a file, but not
delete it, run:

 $ git update-index --assume-unchanged
\ <filename>

Ignoring files
Use Global Gitignore files
 $ git config --global core.excludesfile \ ~/.
gitignore_global

Good starter: https://gist.github.
com/octocat/9257657

https://gist.github.com/octocat/9257657
https://gist.github.com/octocat/9257657
https://gist.github.com/octocat/9257657

Ignoring files for a repo
Add the file(s) name to .git/info/exclude

NOTE: This only affects that repository, and
should only be used for files you don’t want in
the repos ignore file.

Always name remotes
When doing pushes or pulls always name the
remote server and branch.
 $ git pull <remote> <branch>
 $ git push <remote> <branch>

With Git version 2.x this becomes even more
important.

But that is hard!
● That is extra typing that I have to do!
● I only ever work with one remote/branch

anyways!
● etc...

Solution
function current_branch() {

 ref=$(git symbolic-ref HEAD 2> /dev/null) || \

 ref=$(git rev-parse --short HEAD 2> /dev/null) || return

 echo ${ref#refs/heads/}

}

these aliases take advantage of the previous function

alias ggpull='git pull origin $(current_branch)'

alias ggpur='git pull --rebase origin $(current_branch)'

alias ggpush='git push origin $(current_branch)'

Autocorrect
$ git plush origin master
git: 'plush' is not a git-command.
See 'git --help'.

Did you mean this?
 push

To have Git fix this
 $ git config --global \ help.
autocorrect = 1

Removing whitespace
Create a $HOME/.config/git/attributes file and
add:

* filter=trimWhitespace

Removing whitespace
Next we need to tell Git about this filter

 $ git config --global \ filter.
trimWhitespace.clean \ trim_whitespace

Removing whitespace
Now create the “trim_whitespace” command

 #!/usr/bin/env ruby
 lines = STDIN.readlines
 lines.each do |line|
 puts line.rstrip
 end

Prettier log output
Add the following to $~/.gitconfig under the
[alias] section

lg = log --color --graph \ --pretty=format:'%
Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%
cr) %C(bold blue)<%an>%Creset' --abbrev-commit
--

What does that do

Another log
 alias glogf='git log --graph --color'

What does that do?

Handling multiple emails
● What if you have repos you need associated

with different email addresses?
● Edit .git/config file for each repository

manually
● Create a Git command to set email

addresses for you.

Profile command
In the global Git config file add the following under the
[alias] tag
 workprofile = config user.email \"
adam@codejourneymen.com\"

Then run
 $ git workprofile

Speed up slow net
If you have problems with slow network
connections. Edit ~/.ssh/config add:

 ControlMaster auto
 ControlPath /tmp/%r@%h:%p
 ControlPersist yes

Stop working around Git
Git implements several commands that interact
with the filesystem as well as its own tracking
info.
● mv => git mv
● cp => git cp
● rm => git rm

Moving files
 $ git mv <oldFilename> <newFilename>

is the same as

 $ mv <oldFilename> <newFilename>
 $ git add <newFilename>

Copying files
 $ git cp <original> <copy>

is the same as

 $ cp <original> <copy>
 $ git add <copy>

Removing files
 $ git rm <filename>

is the same as

 $ rm <filename>
 $ git rm <filename>

Recovering/Restoring Files
Discarding changes
 $ git checkout <file>
Rolling a file back
 $ git checkout master~N <file>
Working on all files with a certain extension
 $ git checkout -- ‘*.php’

And now for something completely
different...

Branching
● How to work with

branches.
● Why you should work

with branches.

What is a branch anyways?
A branch is a copy
of the code base, where
changes can be made
that doesn’t affect
copies.
*Very simple explanation

Listing branches
Using the branch command with no arguments
displays a list of branches and marks the
current branch
 $ git branch
 develop

 *master

Creating branches
Create a new branch by giving a single
argument to branch
 $ git branch <name>

Switching branches
To switch branches give the name of the
branch as an argument to checkout
 $ git checkout <branch_name>

Doing both at once
To create and switch to the branch
 $ git checkout -b <name>

Deleting a branch
To delete a branch after it has been merged
 $ git branch -d <name>
To delete a branch without merging
 $ git branch -D <name>

Recovering deleted branch
 $ git relog

793d399 HEAD@{0}: rebase finished: returning to refs/heads/develop
793d399 HEAD@{1}: rebase: checkout feature/test2
2d1a343 HEAD@{2}: checkout: moving from feature/test2 to develop
793d399 HEAD@{3}: checkout: moving from feature/test1 to feature/test2

 $ git checkout -b <branch> HEAD@{N}

Working with branches
● Separate code changes when adding a

feature or making a change.
● Easier context switches.

Squashing commits
Say you have two commits that really should
have been one. What can you do?

Word of warning
Don’t do the following if a push has been done
between the commits being squashed/merged.

If you do try this things are guaranteed to
break.

Word of warning

git commit --amend
 $ git add file1 file2
 $ git commit -m 'Adding some files'

 ...
 $ ls
 file1 file2 file3

git commit --amend
 $ git add file3

 $ git commit --amend

Merging commits
 $ git rebase --interactive HEAD~2

Warning about rebase
● Rebasing alters the history of the repository.
● Constantly mixing merges and rebases can

cause issues with upstream repos.

Yay visuals!

Rebasing commits

Merging branches
 $ git checkout <branch to merge into>
 $ git merge <branch to merge>

Merging branches

Rebasing branches
 $ git checkout <branch to merge into>

 $ git rebase <branch to merge>

Rebasing branches

Merging vs Rebasing
● There are two camps about this matter.
● Merging keeps the commit structure (branch

info) intact, but creates empty commits.
● Rebasing flattens the commit structure, and

avoids creating empty commits.

Finding bugs (and who introduced
them)

Useful Git tools:
● git bisect
● git blame

Git Bisect
 $ git bisect start <bad> <good>

 $ git bisect bad or $ git bisect good

 $ git bisect reset

This is just the start of what bisect can do!

Git Blame
 $ git blame <file or commit SHA>

Thank you!

